On Some Properties of Hyperconvex Spaces
نویسندگان
چکیده
We are going to answer some open questions in the theory of hyperconvex metric spaces. We prove that in complete R-trees hyperconvex hulls are uniquely determined. Next we show that hyperconvexity of subsets of normed spaces implies their convexity if and only if the space under consideration is strictly convex. Moreover, we prove a Krein-Milman type theorem for Rtrees. Finally, we discuss a general construction of certain complete metric spaces. We analyse its particular cases to investigate hyperconvexity via measures of noncompactness.
منابع مشابه
Hyperconvex Semi-metric Spaces
We examine the close analogy which exists between Helly graphs and hyperconvex metric spaces, and propose the hyperconvex semi-metric space as an unifying concept. Unlike the metric spaces, these semi-metric spaces have a rich theory in the discrete case. Apart from some new results on Helly graphs, the main results concern: fixed point property of contractible semi-metric spaces (for nonexpans...
متن کاملMetric Trees, Hyperconvex Hulls and Extensions
In this paper we examine the relationship between hyperconvex hulls and metric trees. After providing a linking construction for hyperconvex spaces, we show that the four-point property is inherited by the hyperconvex hull, which leads to the theorem that every complete metric tree is hyperconvex. We also consider some extension theorems for these spaces.
متن کاملTopology Proceedings
We examine the close analogy which exists between Helly graphs and hyperconvex metric spaces, and propose the hyperconvex semi-metric space as an unifying concept. Unlike the metric spaces, these semi-metric spaces have a rich theory in the discrete case. Apart from some new results on Helly graphs, the main results concern: fixed point property of contractible semi-metric spaces (for nonexpans...
متن کاملMeasure of Nonhyperconvexity and Fixed-point Theorems
In this paper, we work with the notion of the measure of nonhyperconvexity introduced by Cianciaruso and De Pascale [6] in order to obtain new fixed-point theorems in hyperconvex metric spaces. This class of metric spaces was introduced by Aronszajn and Panitchpakdi [1] in 1956 to study problems on extension of uniformly continuous mappings. Several and interesting properties of these spaces we...
متن کامل